Recitation 10. May 18

Focus: statistics, Fourier series

Consider running a measurement n times, and getting the samples $x_{1}, x_{2}, \ldots, x_{n}$. The collection of these n numbers is known as a data seat. The mean of the data set is:

$$
\mu=\frac{1}{n}\left(x_{1}+\cdots+x_{n}\right)
$$

Given two data sets x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} with means μ and ν, their covariance is:

$$
\Sigma_{x y}=\frac{1}{n-1}\left(\left(x_{1}-\mu\right)\left(y_{1}-\nu\right)+\cdots+\left(x_{n}-\mu\right)\left(y_{n}-\nu\right)\right)
$$

(you get $n-1$ instead of n in the denominator due to Bessel's correction).
The covariance of the data set x_{1}, \ldots, x_{n} with itself is called its variance $\Sigma=\frac{1}{n-1}\left(\left(x_{1}-\mu\right)^{2}+\cdots+\left(x_{n}-\mu\right)^{2}\right)$.
In terms of the vectors $\boldsymbol{o}=\left[\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right], \boldsymbol{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right], \boldsymbol{y}=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right]$, the (co)variance is given by:
$\Sigma_{x y}=\frac{\boldsymbol{x}^{T} P \boldsymbol{y}}{n-1} \quad$ where $P=I-\frac{\boldsymbol{o o}^{T}}{\boldsymbol{o}^{T} \boldsymbol{o}}$ is the projection matrix onto the orthogonal complement of \boldsymbol{o}
In general, let $\boldsymbol{A}=\left[\begin{array}{cccc}x_{1} & y_{1} & z_{1} & \ldots \\ \vdots & \vdots & \vdots & \vdots \\ x_{n} & y_{n} & z_{n} & \ldots\end{array}\right]$ a matrix of different data sets. Their covariance matrix is computed by:

$$
K=\left[\begin{array}{cccc}
\Sigma_{x x} & \Sigma_{x y} & \Sigma_{x z} & \cdots \\
\Sigma_{y x} & \Sigma_{y y} & \Sigma_{y z} & \cdots \\
\Sigma_{z x} & \Sigma_{z y} & \Sigma_{z z} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right]=\frac{\boldsymbol{A}^{T} P \boldsymbol{A}}{n-1}
$$

Any 2π-periodic function $f(x)$ can be written as a Fourier series:

$$
f(x)=a_{0}+a_{1} \cos x+a_{2} \cos 2 x+a_{3} \cos 3 x+\cdots+b_{1} \sin x+b_{2} \sin 2 x+b_{3} \sin 3 x+\cdots
$$

where:

$$
\begin{aligned}
& a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
\end{aligned}
$$

for all $n>0$. Alternatively, one can define complex-valued Fourier series, and write any 2π-periodic function as:

$$
f(x)=\sum_{k \in \mathbb{Z}} c_{k} e^{i k x}
$$

where:

$$
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i k x} d x
$$

1. Consider the matrix:

For some constants a and b. Suppose it is a covariance matrix of two random variables X and Y.

- What can you say about a and b based on the information above?
- What can you say about a and b if, on top of the information above, you know that there is some linear combination of X and Y that are constant?

Solution:

2. Consider the following measurements for temperature and pressure (don't worry about units):

$$
T=\left[\begin{array}{c}
1 \\
2 \\
-3
\end{array}\right] \quad \text { and } \quad P=\left[\begin{array}{l}
6 \\
1 \\
2
\end{array}\right]
$$

- Compute the covariance matrix of T and P.
- Find linear combinations of temperature and pressure that are uncorrelated.

Solution:

Solution:

3. Consider the 2π-periodic square wave, which on the interval $[-\pi, \pi]$ is described by the function:

$$
f(x)= \begin{cases}0, & \text { if }-\pi \leq x \leq 0 \\ 1, & \text { if } 0<x \leq \pi\end{cases}
$$

Compute the Fourier series expansion of $f(x)$, in terms of either sines/cosines or complex exponentials.

Solution:

