Recitation 10. May 18

Focus: statistics, Fourier series

Consider running a measurement n times, and getting the samples x_1, x_2, \ldots, x_n . The collection of these n numbers is known as a data seat. The **mean** of the data set is:

$$\mu = \frac{1}{n} \Big(x_1 + \dots + x_n \Big)$$

Given two data sets x_1, \ldots, x_n and y_1, \ldots, y_n with means μ and ν , their **covariance** is:

$$\Sigma_{xy} = \frac{1}{n-1} \Big((x_1 - \mu)(y_1 - \nu) + \dots + (x_n - \mu)(y_n - \nu) \Big)$$

(you get n-1 instead of n in the denominator due to Bessel's correction).

The covariance of the data set x_1, \ldots, x_n with itself is called its **variance** $\Sigma = \frac{1}{n-1}((x_1 - \mu)^2 + \cdots + (x_n - \mu)^2)$.

In terms of the vectors $\boldsymbol{o} = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$, $\boldsymbol{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$, $\boldsymbol{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$, the (co)variance is given by:

$$\Sigma_{xy} = \frac{\boldsymbol{x}^T P \boldsymbol{y}}{n-1} \qquad \text{where } P = I - \frac{\boldsymbol{o} \boldsymbol{o}^T}{\boldsymbol{o}^T \boldsymbol{o}} \text{ is the projection matrix onto the orthogonal complement of } \boldsymbol{o}$$

In general, let $\mathbf{A} = \begin{bmatrix} x_1 & y_1 & z_1 & \dots \\ \vdots & \vdots & \vdots & \vdots \\ x_n & y_n & z_n & \dots \end{bmatrix}$ a matrix of different data sets. Their **covariance matrix** is computed by:

K =		$ \begin{array}{l} \Sigma_{xy} \\ \Sigma_{yy} \\ \Sigma_{zy} \end{array} $		 	$=\frac{\boldsymbol{A}^T P \boldsymbol{A}}{n-1}$
	L:	:	÷	·]	

Any 2π -periodic function f(x) can be written as a **Fourier series**:

$$f(x) = a_0 + a_1 \cos x + a_2 \cos 2x + a_3 \cos 3x + \dots + b_1 \sin x + b_2 \sin 2x + b_3 \sin 3x + \dots$$

where:

$$a_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx$$
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) dx$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) dx$$

for all n > 0. Alternatively, one can define complex-valued Fourier series, and write any 2π -periodic function as:

$$f(x) = \sum_{k \in \mathbb{Z}} c_k e^{ikx}$$

where:

$$c_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx$$

1. Consider the matrix:

Solution:

$\begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$

For some constants a and b. Suppose it is a covariance matrix of two random variables X and Y.

- What can you say about a and b based on the information above?
- What can you say about a and b if, on top of the information above, you know that there is some linear combination of X and Y that are constant?

2. Consider the following measurements for temperature and pressure (don't worry about units):

$$T = \begin{bmatrix} 1\\2\\-3 \end{bmatrix} \quad \text{and} \quad P = \begin{bmatrix} 6\\1\\2 \end{bmatrix}$$

- Compute the covariance matrix of T and P.
- Find linear combinations of temperature and pressure that are uncorrelated.

Solution:

Solution:

3. Consider the 2π -periodic square wave, which on the interval $[-\pi, \pi]$ is described by the function:

$$f(x) = \begin{cases} 0, \text{ if } -\pi \le x \le 0\\ 1, \text{ if } 0 < x \le \pi \end{cases}$$

Compute the Fourier series expansion of f(x), in terms of either sines/cosines or complex exponentials.

Solution: